Krampl, Peter: Komplexe Nichtlineare Optik - Theoretische Charakterisierung der 2- Photonen Resonanz nichtzentrosymmetrischer Materie |
A.1: Makroskopische
optische Response Tensoren
In diesem Abschnitt werden die
Ergebnisse der Berechnungen aus den Kapiteln 4 bis 6 verzeichnet.
A.1.1: nichtlineare komplexe
Fourieramplitude in
|
(A.1) |
|
(A.2) |
|
(A.3) |
|
(A.4) |
|
(A.5) |
monochromatische c. c.- Felder
|
(A.6) |
|
(A.7) |
|
(A.8) |
|
(A.9) |
|
(A.10) |
A.1.2: nichtlineare
makroskopische Suszeptibilität in
|
(A.11) |
|
(A.12) |
|
(A.13) |
|
(A.14) |
|
(A.15) |
monochromatische c. c.- Felder
|
(A.16) |
|
(A.17) |
|
(A.18) |
|
(A.19) |
|
(A.20) |
A.1.3: nichtlineare
dielektrische Funktion in
|
(A.21) |
|
(A.22) |
|
(A.23) |
|
(A.24) |
|
(A.25) |
monochromatische c. c.- Felder
|
(A.26) |
|
(A.27) |
|
(A.28) |
|
(A.29) |
|
(A.30) |
A.1.4: nichtlinearer
makroskopischer Brechungsindex in
|
(A.31) |
|
(A.32) |
|
(A.33) |
|
(A.34) |
|
(A.35) |
monochromatische c. c.- Felder
|
(A.36) |
|
(A.37) |
|
(A.38) |
|
(A.39) |
|
(A.40) |
A.1.5: komplexe nichtlineare
Resonanzfunktion für nichtzentrosymmetrische Materie in ,
|
(A.41) |
A.1.6: nichtlineare
Koeffizienten in ,
Allgemein
|
(A.42) |
Fundamentale
|
(A.43) |
HHG,
|
(A.44) |
SubHG,
|
(A.45) |
A.1.7: Simplified bond- hyperpolarizability model
(SBHM)
|
(A.46) |
B.1:
Verzeichnis der Programm- Codes
Wie in den Kapiteln 3 und 4
beschrieben ist es möglich die zeitliche Entwicklung und die Fourierentwicklung
des nichtlinearen optischen Responses mittels Computer- Physik zu behandeln. Die
Codes der entsprechenden Mathematica®- Programme sind hier
verzeichnet.
B.1.1: Nichtlineare komplexe
Fourieramplitude
Clear["Global`*"];
Off[General::spell1]
<<NumericalDifferentialEquationAnalysis`
<<DifferentialEquations`NDSolveUtilities`
SurfaceEquationNDSolve:=
{
x'[t]v[t],
v'[t]+2g v[t]+wres2 x[t]+a x[t]2
-qspez ExternForce (Re[Exp[-ä
wext t]]+Re[Exp[-ä 1/u
wext t]])};
CRK4[___]["Step"[sigma_, t_, h_, y_, yp_]]
:=Module[{k0,k1,k2,k3},
k0=h yp;
k1=h sigma[t+h/2,y+k0/2];
k2=h sigma[t+h/2,y+k1/2];
k3=h sigma[t+h,y+k2];
{h, (k0+2 k1+2
k2+k3)/6}
]
CRK4[___]["DifferenceOrder"] :=4
SurfaceNDSolve["{}"]:=
Block[{NDSolution,ListND,plotopts,initialConditions,param},
param ={wres=3.0386,wext=2.9786,g=0.013,
a=0.046165,qspez=2.920596161,
ExternForce=7.5,
tmin=0,tmax=500,u=1};
param;
initialConditions = {x0=0,v0=0};
initialConditions ;
SURFACESOLUTION[
wres_,wext_,g_,a_,qspez_,tmin_,tmax_,x0_,v0_,ExternForce_,u_,opts___]=
NDSolution:=
NDSolve[{SurfaceEquationNDSolve,
x[tmin]x0,
v[tmin]v0},
{x[t],v[t]},
{t,tmin,tmax},
Method®CRK4, Method®{"DoubleStep"},
StartingStepSize®1/10,
MaxSteps®Infinity];
xstart=x[tmax]/.NDSolution[[1]];
vstart=v[tmax]/.NDSolution[[1]];
ListND=Table[{
wext,FindMaximum [x[t]/.NDSolution,
{t,0.9tmax-2p/wext,0.9tmax}][[1]]},
{wext,0.1
wres,5.0
wres,0.001
wres}];
plotopts=
With[{optPlot =
FilterOptions[ListPlot,opts] ,
optND =FilterOptions[NDSolve,opts]},
ListPlot[ListND,
Joined®False,
PlotRange®{{0.0,6.00},All},
PlotStyle®{PointSize[0.0043],Red},
ImageSize®{600,400},
AxesOrigin®{0.5,0},
AxesLabel®{"Frequenz
w [1/fs]",
"Amplitude X(w)[pm]"},
Frame->True,
FrameStyle®{
{Directive[Thick,Black,16],
Automatic},
{Directive[Thick,Black,16],Automatic}},
GridLines®Automatic,
GridLinesStyle®Directive[Darker[Green],
Dashed]]]]
SurfaceNDSolve["{}"]
B.1.2: nichtlinearer
Response in der Zeitdomäne
Clear["Global`*"];
Off[General::spell1]
<<NumericalDifferentialEquationAnalysis`
<<DifferentialEquations`NDSolveUtilities`
SurfaceNDSolution[ wres_,wext_,g_,a_,qspez_,tmin_,tmax_,ExternField_,u_]
:=
Module[{NDSolution,NDList,InitialConditions},
InitialConditions = {x0=0,v0=0};
InitialConditions;
NDSolution=
NDSolve[{x'[t]v[t],v'[t]+2g v[t]+wres2 x[t]+a x[t]2-qspez ExternField (Re[Exp[-ä wext t]]+Re[Exp[-ä 1/u wext t]]),x[tmin]x0,v[tmin]v0},{x[t], v[t]},{t,tmin,tmax},
Method®{"DoubleStep",
Method®{"ImplicitRungeKutta",
"Coefficients"->"ImplicitRungeKuttaGaussCoefficients",
"DifferenceOrder"®Automatic},
"ImplicitSolver"®
{"Newton",
"AccuracyGoal"®MachinePrecision,
"PrecisionGoal"®MachinePrecision,
"IterationSafetyFactor"®1/10 }};StartingStepSize®1/100,
MaxSteps®Infinity,
MaxStepSize®(1/10)];
NDList=x[t]
/. NDSolution;
Plot[NDList,{t,0,500},
PlotRange®All,
PlotStyle ® Hue[0.7],
PlotPoints®500,
ImageSize®{600,400},
AxesLabel®{"input frequency w","\nAmplitude A"},
PlotLabel®
Style["gedämpfte nichtlineare Response- Kurven 2. Ordnung"],
FrameLabel®{{"left label"},
{"bottom label"}},
PlotPoints®500,
Frame->True,
FrameStyle®{{Directive[Thick,Black,14],Automatic},
{Directive[Thick,Black,14],
Automatic}},
GridLines®{Automatic,Automatic},
GridLinesStyle®Directive[Darker[Green]]]]
ND=SurfaceNDSolution[
3.0386,2.9786,0.013,0.046165,2.920596161,0.,500,7,1
]
B.1.3: nichtlineare
Trajektorie im Phasenraum
Clear["Global`*"];
Off[General::spell1]
<<NumericalDifferentialEquationAnalysis`
<<DifferentialEquations`NDSolveUtilities`
SurfaceSolution[ wres_,wext_,g_,a_,qspez_,tmin_,tmax_,E1_,u_,opts___]
:=
Module[{NDSolution,InitialConditions},
InitialConditions = {x0=0,v0=0};
InitialConditions;
NDSolution=
NDSolve[
{
x'[t]v[t],
v'[t]+2g v[t]+wres2 x[t]+a x[t]2
-E1*Re[ Exp[-ä wext t]]+Re[Exp[-ä 1/u wext t]],
x[tmin]x0,
v[tmin]v0},
{x, v},{t,tmin,tmax},
Method®{"DoubleStep",
Method®{"ImplicitRungeKutta",
"Coefficients"->"ImplicitRungeKuttaGaussCoefficients",
"DifferenceOrder"®Automatic},
"ImplicitSolver"®{"Newton",
"AccuracyGoal"®MachinePrecision,
"PrecisionGoal"®MachinePrecision,
"IterationSafetyFactor"®1/10 }};
StartingStepSize®1/100,
MaxSteps®Infinity,
MaxStepSize®(1/10)]
]
tmax=500;
SurfaceNDSol
=SurfaceSolution[
3.0386,2.7386,0.013,0.046165,2.920596161,0.,500,7.,1
];
ParametricPlot[
Evaluate[{x[t],x'[t]}
/.SurfaceNDSol],
{t,0.90*tmax, tmax},
AspectRatio®1,
PlotStyle ® Hue[0.0],
PlotRange®All,
PlotStyle®AbsoluteThickness[1.03],
ImageSize®{600,400},
PlotPoints®500,Frame->True,
FrameStyle®{{Directive[Thick,Black,16],
Automatic},
{Directive[Thick,Black,16],Automatic}}
]